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We now state a higher dimensional version of the arithmetic large sieve.
We start with the following situation:

• We are given a set A ⊂ Zn of integer vectors, contained in a box of
size X:

diamA ≤ X

• We are given a set P of primes, all satisfying p ≤ z.
• For all p ∈ P, we are given a set Ω(p) ⊂ Zn/pZn of “excluded”

residue classes mod p. Set

ω(p) = #Ω(p)

Let

S(A,P,Ω) = {~a ∈ A : ~a mod p /∈ Ω(p), ∀p ∈ P, p ≤ z}

be the sifted set. The arithmetic form of the large sieve gives an inequality

Theorem 0.1.

(1) #S(A,P,Ω)�n
Xn + z2n

L(z)

where

(2) L(z) :=
∑
m≤z

squarefree

∏
p|m

#Ω(p)

pn −#Ω(p)

It is convenient to state a general lower bound for L(z), where instead of
summing over squarefree integers, one uses positivity of the summands to
just sum over the primes in P:

(3) L(z) ≥
∑
p∈P

#Ω(p)

pn −#Ω(p)

We now present two applications, the first quite trivial
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2 COUNTING REDUCIBLE POLYNOMIALS

0.1. Counting perfect squares. We want to count the number #�[X] of
perfect squares in the interval [1, X] - the answer is clearly

#�[X] ∼
√
X, X →∞

To fit this into the large sieve inequality, we let A = [1, X] ∩ Z, let P be
the set of all odd primes 2 < p ≤ z, and Ω(p) ⊂ Z/pZ to be the non-squares
modulo p. Then for all z > 2,

�[X] ⊆ S(A,P,Ω)

and hence by Theorem 0.1,

#�[X] ≤ #S(A,P,Ω)� X + z2

L(z)

For an odd prime, the number of non-squares modulo p is exactly #Ω(p) =
(p− 1)/2. Hence

#Ω(p)

p−#Ω(p)
=

(p− 1)/2

(p + 1)/2
=

1− 1
p

1 + 1
p

≥ 1

2

Therefore

L(z) ≥
∑

2<p<z

#Ω(p)

p−#Ω(p)

≥
∑

2<p<z

1

2
∼ 1

2

z

log z

Thus L(z)� z/ log z and we find that

#�[X] ≤ #S(A,P,Ω)� X + z2

z/ log z
�
√
X logX

on taking z =
√
X.

0.2. Counting reducible quadratic polynomials. We now give an up-
per bound for the number of reducible monic quadratic polynomials with
integer coefficients of bounded height, in particular showing that almost all
monic quadratic polynomials with integer coefficients are irreducible over
the rationals.

Remark: It is known (van der Waerden [2]) that this result holds for poly-
nomials of arbitrary degree, in fact that the generic polynomial is irreducible
and has Galois group the full symmetric group.

For a monic integer polynomial

f(t) = tn + an−1t + · · ·+ a0

we define the height as

Ht(f) = max
j
|aj |
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Thus for n = 2,

Ht(t2 + bt + c) := max(|b|, |c|)
We define

Rn(N) = {f(t) = tn + an−1t + · · ·+ a0 : Ht(f) ≤ N ; reducible over Q}

to be the set of reducible monic polynomial of degree n with integer coeffi-
cients. In particular for n = 2,

R2(N) = {f(t) = t2 + bt + c : Ht(f) ≤ N, f reducible over Q}
= {(b, c) ∈ Z2,max(|b|, |c|) ≤ N, f reducible over Q} .

Proposition 0.2. #R2(N)� N3/2 logN .

Note that the bound is quite weak, and we only present it as an application
of the large sieve. In fact van der Waerden [2] already gives upper and lower
bounds of order #R2(N) � N logN , (and #Rn(N) � Nn−1 for n > 2, see
also [1]).

Observe that t2 + bt+ c is reducible if and only if the discriminant b2− 4c
is a perfect square. Hence

R2(N) = {(b, c) ∈ Z2,max(|b|, |c|) ≤ N, b2 − 4c = �}

and therefore for all z,

R2(N) ⊆ {(b, c) ∈ Z2,max(|b|, |c|) ≤ N, (b, c) mod p /∈ Ω(p), ∀p ≤ z}

where

Ω(p) = {(b, c) ∈ Z2/pZ2 : b2 − 4c 6= � mod p}
Therefore #R2(N) ≤ #S(A,P,Ω) where

A = [−N,N ]2 ∩ Z2

which has diameter X = 2N . By the large sieve inequality,

#S(A,P,Ω)� N2 + z4

L(z)

so we need to give a lower bound for L(z).

Lemma 0.3. For an odd prime p, #Ω(p) = (p2 − p)/2.

Proof. We take p 6= 2 odd. Let 1NR be the indicator function of the squares
mod p. Then

#Ω(p) =
∑

b mod p

∑
c mod p

1NR(b2 − 4c)

For each fixed b, we change variables c 7→ c′ = b2 − 4c which is a bijection
of Z/pZ if p is odd. This shows that the inner sums all coincide, to be
the number of non-squares mod p, which is (p − 1)/2. Summing over all p
possibilities for b gives the Lemma. �



4 COUNTING REDUCIBLE POLYNOMIALS

From Lemma 0.3 we find

L(z) ≥
∑

2<p≤z

(p2 − p)/2

(p2 + p)/2
=

∑
2<p<z

1− 1
p

1 + 1
p

which is exactly the sum that appeared when bounding squares. Hence

L(z)� z/ log z

giving

#S(A,P,Ω)� N2 + z4

L(z)
� (

N2

z
+ z3) log z � N3/2 logN

on choosing z =
√
N . This proves Proposition 0.2.

0.3. Counting reducible polynomials of higher degree.

Exercise 1. Show that for n > 2,

#Rn(N)�n Nn− 1
2 logN .

Hint: Use the large sieve with

Ωp = {f ∈ Fp[t],deg f = n, monic irreducible over Fp} .
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